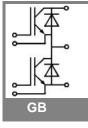

SEMiX 452GB176HDs

Trench IGBT Modules

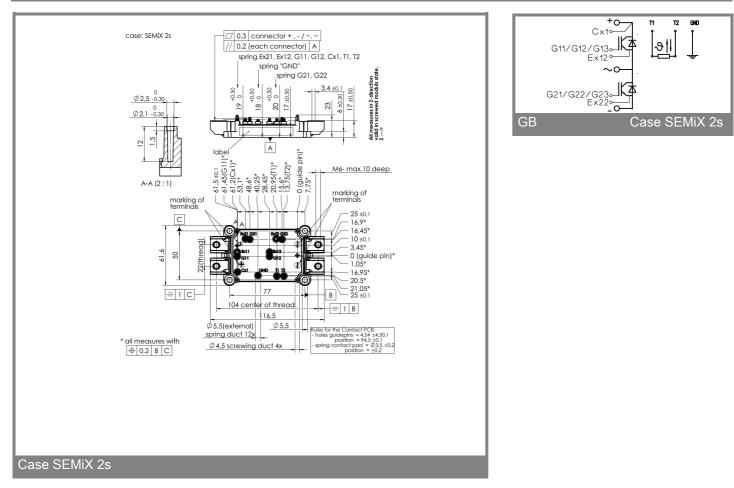
SEMiX 452GB176HDs

Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology •
- V_{CE(sat)} with positive temperature coefficient •
- High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V _{CES}		1700	V						
I _C	T _c = 25 (80) °C	450 (290)	А						
I _{CRM}	t _p = 1 ms	600	А						
V _{GES}		± 20	V						
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V _{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F	T _c = 25 (80) °C	300 (200)	А						
I _{FRM}	t _p = 1 ms	600	А						
I _{FSM}	t _p = 10 ms; sin.; T _j = 25 °C	2000	А						

Characteristics		case = 25°C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 12 \text{ mA}$	5,2	5,8	6,4	V	
I _{CES}	V_{GE} = 0, V_{CE} = V_{CES} , T_j = 25 (125) °C			2,4	mA	
V _{CE(TO)}	$T_j = 25 (125) °C$		1 (0,9)	1,2 (1,1)	V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		3,3 (5,2)	4,2 (6)	mΩ	
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V,		2 (2,45)	2,45 (2,9)	V	
	T _j = 25 (125) °C, chip level					
C _{ies}	under following conditions		20		nF	
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,1		nF	
C _{res}			0,9		nF	
L _{CE}			18		nH	
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ	
t _{d(on)} /t _r	V _{CC} = 1200 V, I _{Cnom} = 300 A				ns	
t _{d(off)} /t _f	V _{GE} = ± 15 V				ns	
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \text{ °C}$		200 (100)		mJ	
Inverse d	•	•				
$V_F = V_{EC}$	I _{Fnom} = 300 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		2 (2,1)	2,2 (2,3)	V	
V _(TO)	T _i = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V	
r _T	T _i = 25 (125) °C		3 (4)	3 (4)	mΩ	
I _{RRM}	I _{Fnom} = 300 A; T _j = 25 (125) °C				А	
Q _{rr}	di/dt = A/µs				μC	
E _{rr}	$V_{GE} = 0 V$				mJ	
Thermal	characteristics					
R _{th(j-c)}	per IGBT			0,07	K/W	
R _{th(j-c)D}	per Inverse Diode			0,17	K/W	
R _{th(j-c)FD}	per FWD				K/W	
R _{th(c-s)}	per module		0,045		K/W	
	ture sensor					
R ₂₅	$T_c = 25 \text{ °C}$		5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]; T[K];B$		3420		к	
Mechanic		l			1	
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
W s' Wt		0, 2,0	236	010		
vv			200		g	

SEMiX 452GB176HDs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.